BIOCHAR

AN ELEGANT SOLUTION FOR COMPLEX PROBLEMS

THE COMPLEX PROBLEM

Climate change from too much CO₂ and other GHG's in the atmosphere

- 1. Excess $\underline{CO_2}$ from burning fossil fuels
- 2. <u>Methane (CH_4)</u> from livestock, landfills & decomposition
- 3. Nitrogen/phosphorous run-off and $\underline{N_2O}$ off-gassing from fossil fuels converted to fertilizer
- 4. Temperature and moisture regime change deleterious to plant health, benefitting disease & insect life-cycles
- 5. Concentrations of biomass "waste" in agriculture and forestry
- 6. High forest density & increasing wildfire risk

Climate Benefits: Carbon and More FOCUS ON BIOCHAR

CHARCOAL WITH A PURPOSE

Support soil biology & nutrients

Protect biology from heavy metals & toxins

BIOCHAR is CARBON

CARBON WITH AMENITIES

NUTRIENTS

SUSTAINABLE OBTAINABLE SOLUTIONS

www.prosandconsbiomassenergy.org

BIOCHAR: the carbon-rich residue of heating biomass without oxygen

Lehmann, 2007, Frontiers in Ecology and the Environment 7, 381-387

PRODUCTS OF PYROLYSIS

Non-Fossil Fuel Energy

- **Syngas** substitute for propane
- Bio-oil bunker fuel, pre-cursor to bio-diesel
- **Heat** space heating, steam production, producing electricity

More Climate Benefits

- Biochar carbon sequestration, soil amendment, less NPK fertilizer use, GHG capture, carbon credits
- Waste reduce by conversion
- **Emissions** captured and recycled

FULL CIRCLE SOLUTION

MINIMAL EMISSIONS

Putting the Bio in the Char SOILS, PLANTS & ANIMALS

BIOCHAR in COMPOST

- 10% by volume reduces CH₄ and N₂O off-gassing and nutrient run-off
- Reduces odors
- Retains well-distributed moisture in production piles
- Absorbs more radiant heat
- Compost charges biochar with nutrients
- Enhances soil fertility long-term

BIOCHAR IMPROVES PLANT GROWTH

Plants absorb CO₂. Increasing primary productivity increases CO₂ sequestration.

BIOCHAR AND LIVESTOCK

Add to litter to reduce odor, capture ammonia and nitrates, increase efficacy of composted litter

Biochar in feed reduces methane emissions by 50%

CARBON SEQUESTRATION

Moving C out of the Active Cycle

CARBON: ACTIVE VS. INACTIVE CYCLE

CARBON SEQUESTRATION USING BIOCHAR

 Slow pyrolysis biochars are highly recalcitrant in soils with half-lives of 100-900 years

 Half lives of 80 years or more are sufficient to provide a credible C sink

J.Amonette/PNEL

Climate mitigation potential of 20 natural pathways.

Climate mitigation potential in 2030 (PgCO_ge yr⁻¹)

Bronson W. Griscom et al. PNAS 2017;114:44:11645-11650

PROJECT DRAWDOWN BIOCHAR'S POTENTIAL FOR CARBON REDUCTION AND SEQUESTRATION FROM CROP RESIDUES

2.22-4.39

GIGATONS CO₂ e REDUCED / SEQUESTERED (2020–2050)

0.95 tons CO₂e AVOIDED EMISSIONS FROM BIOCHAR TON OF FEEDSTOCK **\$195.87–383.3** Billion \$US NET FIRST COST TO IMPLEMENT

\$194 OPERATING COSTS/TON

\$-1.44—0.73 Trillion **\$US** LIFETIME NET OPERATIONAL SAVINGS

Total Life Cycle Assessment

Project Drawdown: https://drawdown.org/solutions/biochar-production

WOOLF, ET. AL. STUDY BIOCHAR'S POTENTIAL CARBON DRAWDOWN

Considering agriculture and forestry wastes

12% ANTHROPOGENIC GHG EMISSIONS/YEAR OFFSET

3.53 GIGATONS CO₂E SEQUESTERED 2020-2050

BIOCHAR BENEFITS SUMMARY

Renewable Energy

- Heat
- Power
- Bio-oil & syngas
- Replacing fossil fuels

Soil Amendment

- Persistent
- Less fertilizer
- Reduces water demand
- Increases plant growth

Water Quality

- Filters toxins
- Holds heavy metals
- Captures N and P run-off
- Raises pH

Climate Benefits

- Sequesters carbon
- Reduces GHG emissions
- Increases plant growth
- Retains soil moisture

If it's not sustainable, don't do it. **SUSTAINABILITY GUIDELINES**

SUSTAINABLE BIOCHAR

Derived from terrestrial biomass and produced in way that, on a life-cycle assessment basis, at both the feedstock source and point of use:

- Preserves smallholder farms and watersheds
- Reduces competition for & use of natural resources and energy
- Maintains or improves soil quality
- Reduces greenhouse gas emissions
- Protects habitats and native ecosystems
- Mimics nature and natural processes
- Provides community benefits, jobs and fair labor

SUSTAINABLE BIOCHAR INDUSTRY

Meets triple bottom line metrics of economic profitability, environmental protection and social equity because it's:

- Geographically decentralized, distributed
- Close to biomass sources and markets, minimizing transportation
- Supplying diverse markets and value-add products with no waste
- Participating in carbon markets and trading programs
- Production is carbon neutral or negative in life cycle assessment
- Product is quality-assured through transparent processes
- Compatible with and supportive of ecosystem services
- Provides community benefits, jobs and fair labor

THANK YOU!

Gloria Flora, Sustainable Obtainable Solutions 406-495-0738

gflora@s-o-solutions.org

BIOMASS-TO-ENERGY CONCERNS

- Use of food or animal-feed as feedstock
- Conversion of cropland to grow biomass
- Conversion of CRP lands
- Industrial-scale centralized production and/or collection of biomass
- Transportation carbon footprint & costs
- Ecologically unsustainable amount of biomass from cropland & forests removed
- Effects on visual quality and wildlife habitat

BIOCHAR FOR CLIMATE

Large amounts of forestry and agricultural residues and other biomass are currently burned or left to decompose thereby releasing carbon dioxide (CO₂) and/or methane (CH4)—two main greenhouse gases (GHGs)—into the atmosphere. Under biochar conversion scenarios, easily mineralized carbon compounds in biomass are converted into fused carbon ring structures in biochar and placed in soils where they persist for hundreds or thousands of years. When deployed on a global scale through the conversion of gigatonnes of biomass into biochar, studies have shown that biochar has the potential to mitigate global climate change by drawing down atmospheric GHG concentrations (Woolf et al, 2010).